Supporting materials for

Synergistic and Low Adverse Effect Cancer Immunotherapy by Immunogenic Chemotherapy and Locally Expressed PD-L1 Trap

Song et al.

Synergistic and Low Adverse Effect Cancer Immunotherapy by Immunogenic Chemotherapy and Locally Expressed PD-L1 Trap

Wantong Song^{1,4}, Limei Shen¹, Ying Wang¹, Qi Liu¹, Tyler J. Goodwin¹, Jingjing Li², Olekasandra Dorosheva², Tianzhou Liu⁵, Rihe Liu^{2,3,*}, and Leaf Huang^{1,*}

¹Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

²Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

³Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

⁴Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.

⁵Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130041, P. R. China

* Correspondence and requests for materials should be addressed to R.L. (<u>rliu@email.unc.edu</u>) or to L.H. (<u>leafh@email.unc.edu</u>).

Supplementary file includes:

Supplementary Figures 1 to 13.

Supplementary Tables 1 to 2.

Supplementary Note 1.

Supplementary Figures

Supplementary Figure 1. Anti-PD-L1 mAb therapy in orthotopic MC38 model. **a** Treatment scheme and tumor growth curves of orthotopic MC38 tumors in PBS and α -PD-L1 treated groups (n = 5 mice per group). **b** IVIS images of the orthotopic MC38 tumors on day 27. **c** Immunofluorescence staining of orthotopic MC38 tumors in PBS group using DAPI (blue) and anti-CD3 antibody (red). Yellow dotted line indicates the border between intestinal mucosa and the orthotopic tumor. Scale bar represents 50 μ m. Significant differences were assessed in **a** using two-way ANOVA. Results are presented as mean (SD). * p < 0.05.

Supplementary Figure 2. OxP induced ICD in CT26-FL3 cells. (a) CRT exposure and HMGB1 release test of CT26-FL3 cells with or without incubation with OxP. Scale bar represents 20 μ m. (b) ELISA detection of HMGB1 release in the supernatants of CT26-FL3 cells treated with different concentrations of OxP for 24 h (n = 3). (c) ELISpot test of the splenocytes of mice injected with or without OxP incubated CT26-FL3 cells. (d) OxP incubated CT26-FL3 cells efficiently vaccinated mice against re-challenging of CT26-FL3 cells. In the mice without pre-treatment, 0 out of 5 mice were tumor free. In the OxP incubated cells vaccinated group, 2 out of 5 mice were tumor free, and the tumor growth rate is slower. Significant differences were assessed in b using t test. Results are presented as mean (SD). *p < 0.05, ***p < 0.001.

Supplementary Figure 3. Immunofluorescence staining of the orthotopic CT26-FL3 tumors after OxP treatment using DAPI (blue), anti-F4/80 (red), anti-NK1.1 (green), anti-CD4 (red) and anti-FoxP3 (green), anti-CD11b (green) and anti-Gr-1 (red). Yellow dotted line indicates the border between intestinal mucosa and the orthotopic tumor. Scale bar represents 50 µm.

Supplementary Figure 4. IVIS images of the orthotopic CT26-FL3 tumor-bearing mice after various treatments on day 33.

Supplementary Figure 5. Characterization of the prepared LPD-PD-L1 trap plasmid nanoparticles. **a** TEM images. **b** Volume average size detected by DLS. **c** Zeta potential.

Supplementary Figure 6. GFP expression in tumor tissues on day 1, 2, 4 and 7. GFP plasmid loaded LPD nanoparticles were given on day 0 at a dose of 50 μ g plasmid per mouse. Scale bar represents 20 μ m.

Supplementary Figure 7. IVIS images of the orthotopic CT26-FL3 tumor-bearing mice after various treatments on day 33.

Supplementary Figure 8. Orthotopic CT26-FL3 tumor growth curves of the PBS, OxP+PD-L1 or combined with α -CD8/ α -CD4 groups (n = 5 mice per group). Significant differences were assessed using two-way ANOVA. Results are presented as mean (SD). ** P < 0.01, *** P < 0.001.

Supplementary Figure 9. TUNEL staining of the PBS, PD-L1 trap, OxP and OxP+PD-L1 trap treated CT26-FL3 tumor tissues on day 28. Positive ratios were quantified in 3 randomly selected fields per mouse (n = 4 mice per group). Scale bar represents 50 μ m. Significant differences were assessed using t test. Results are presented as mean (SD). *** P < 0.001.

Supplementary Figure 10. Body weight over initial of the orthotopic CT26-FL3 tumor-bearing mice in PBS, PD-L1 trap, OxP and OxP+PD-L1 trap treated groups (n = 5).

Supplementary Figure 11. Complete blood count and blood chemistry analysis of the orthotopic CT26-FL3 tumor bearing mice after various treatments. Measurements were carried out on day 28 (n = 3).

Supplementary Figure 12. Pathological analyses of liver, spleen, heart, lung and kidney of the CT26-FL3 tumor-bearing mice in the PBS, PD-L1 trap, OxP and OxP+PD-L1 trap treated groups on day 28. The regions in the white lines or sites pointed by white arrows in liver are metastasis sites. The photos were taken at 20×magnification.

Supplementary Figure 13. Representative images of the B16F10 (a) and 4T1 (b) tumors at the end of observation.

Supplementary Tables

Supplementary Table 1. Antibodies used in the study.

Antibodies	Company	Catalog No.	Application	Dilution fold
Alexa Fluor 488 Anti-CD45	BioLegend	103122	IF	200
Alexa Fluor 647 Anti-CD3	BioLegend	100209	IF	200
Alexa Fluor 8594 Anti-CD11c	BioLegend	117346	IF	200
Alexa Fluor 8594 Anti-CD4	BioLegend	100446	IF	200
Alexa Fluor 488 Anti-FoxP3	BioLegend	126406	IF	200
Alexa Fluor [®] 594 Anti-F4/80	BioLegend	123140	IF	200
FITC Anti-NK1.1	BioLegend	108706	IF	200
Alexa Fluor 8594 Anti-Gr1	BioLegend	108448	IF	200
Alexa Fluor 488 Anti-CD11b	BioLegend	101217	IF	200
APC Anti-IL-10	BioLegend	505010	IF	200
Anti-HMGB1	Abcam	ab18256	IF	500
Anti-CRT	Abcam	ab2907	IF	500
Goat Anti-Rabbit IgG, Alexa Fluor \$594	Abcam	Ab150080	IF	500
Alexa Fluor 594 Anti-CD8a	BioLegend	100758	Flow	500
PE Anti-CD206	BioLegend	141706	Flow	500
APC Anti-DC Marker	BioLegend	124913	Flow	500
APC-Cy7 Anti-CD3e	BioLegend	557596	Flow	500
BV605 Anti-CD274	BioLegend	329724	IF, Flow	200, 500
APC Anti-mouse IL-17A	BioLegend	506916	Flow	500
PerCP Anti-CD45	BD Pharmingen	550994	Flow	500
FITC Anti-CD4	Santa Cruz	D3010	Flow	500
Purified anti-human CD3	Biolegend	300301	IF, IHC	200
Donkey Anti-mouse IgG, Alexa Fluor 594	Abcam	Ab150108	IF	200

IF: immunofluorescence. IHC: immunohistochemistry. Flow: Flow cytometry.

Supplementary Table 2. Primers used in this study

Primer	Applied Biosystems	
Mouse GAPDH	Mm99999915_g1	
Mouse IFN-γ	Mm01168134_m1	
Mouse TNF-α	Mm00443260_g1	
Mouse IL4	Mm00445259_m1	
Mouse IL10	Mm01288386_m1	
Mouse CXCL10	Mm00445235_m1	
Mouse CXCL9	Mm00434946_m1	
Mouse CCL2	Mm00441242_m1	
Mouse CXCL12	Mm00445553_m1	
Mouse CXCL13	Mm04214185_s1	

Supplementary Note 1. Nucleic acid sequences coding the open reading frame of the mouse PD-L1 trap (*).

^{*:} From PCT/US2016/051966